
Other advantages include:

90% reduction in time for new feature development

Simplified GraphQL data fetching architecture makes it
easy to add new features

Authorization and permissions model secures sensitive
financial data

Incremental migration to GraphQL rather than
monolithic rewrite

Breaking down barriers between frontend and backend
engineering

Consistency in production deployment and
configuration utilizing Hasura metadata

In just one year Pipe has experienced amazing success,
gaining over 3,500 customers and $1 billion in tradable
annual recurring revenue - accomplishing this with just 11
engineers.

Helping fuel this efficiency was Pipe’s decision early on to
make Hasura an essential part of their technical
architecture, which has provided tangible benefits to their
dev processes and their bottom line.

Pipe is a rapidly growing fintech startup that’s transforming
how companies fund their growth by unlocking their biggest
asset - revenue. Through Pipe’s platform, companies can
trade their monthly or quarterly contracts for their annual
value upfront, instead of taking on highly dilutive equity and
restrictive debt.

Pipe's technical architecture

Hasura helps us remove the strict
boundaries that traditionally separate
front-end and back-end engineers,
and makes it easier for any
developer to make changes.

How Startup Pipe Went From Prototype
to Production In 11 Days With Hasura

11 days$600k USD

https://www.pipe.com

Pipe’s Challenge
Pipe makes it easy for companies with recurring revenue
streams and subscription-based business models to convert
that into capital to scale and quickly scale and grow their
businesses.

Pipe’s development team needed to thread the needle
balancing the immediate requirements of the business while
also building for the future. Their technical architecture
started with a Postgres database, Go as their backend
language, REST APIs, and React for their web front-end
running on Google Cloud. As they rapidly grew, they needed
to consider additional concerns:

Fast Time to Market & Feature Innovation:

Pipe’s team needed to quickly create or change features
based to gain new customers and respond to user
feedback

Flexible Architecture:

One of Pipe’s architectural goals was to keep the
architecture as agile as possible, where changes to the
underlying database and frontend UX could happen
rapidly.

Small Development Team:

Pipe’s 11 engineers needed to stay agile and flexible -
understanding all layers of their system - database,
backend, integrations, and the frontend web UI

Flexible Web APIs:

One of their early challenges was inflexibility of utilizing
REST APIs, where they encountered multiple variations
of similar request types, but each requiring its own REST
endpoint because of differing requirements.

Performance:

Pipe’s website needed to run quickly to provide a great
user experience, and scale to meet the traffic of their
rapidly growing customer base.

Security & Authorization:

Pipe’s system stores sensitive financial and customer
data of their customers and they needed to make sure
that the data was secure and that users could only view
data they were authorized to see

Pipe helps businesses convert subscriptions and recurring
contracts into up-front capital

Why Pipe Chose Hasura

As Pipe started investigating solutions to these challenges,
they discovered Hasura and went into production with it
within 11 days.

“We needed 50% fewer frontend developers than we
thought we needed. Hasura and GraphQL reduced the
toil to build and iterate on the frontend.”

Ian: Frontend Developer

Zain: Pipe’s CTO

Pipe put Hasura into production within 11 days of discovering it, helping
them develop new features rapidly and breaking down barriers between
backend and frontend development.

Hasura is a fantastic way to create a
data fetching layer to our database.
It’s ultra-stable and often better at
planning queries than ones we were
writing ourselves.

Ease of Use

Hasura’s intuitive tools and documentation made it easy to set
up and connect to their Postgres database, instantly
auto-generating GraphQL schemas and resolvers based on
the tables and views in their database. This saved them
development and maintenance time not having to author any
more of their data access APIs themselves and modifying the
code every time they made a database change.

GraphQL-based Data Access

Moving to GraphQL from REST also enabled them to unify and
simplify their data access APIs. The flexibility allows the
same endpoint to return only the requested fields and child
(tree) data structures - making the queries more efficient and
eliminating the need to create a different API for each unique
request.

As Pipe made changes in their database, they didn’t have to
rewrite their APIs - they just had to adjust requests made
from their React frontend to access the new data.

Security and Authorization

Another benefit Hasura provided is its built-in security and
authorization capabilities, which can limit what data is
returned down to the individual column and row level. This
capability saved on development time implementing it
themselves and ensured that customers could only view their
own data.

Development Team & Processes

Utilizing Hasura made it easier for every engineer to
understand the flow of data from the database to their
frontend, making it possible for backend or frontend
developers to make changes and add features quickly.

Operationally, their deployment processes are simplified by
utilizing Hasura’s metadata capabilities to make sure
configuration changes made in development and staging are
consistently deployed to production.

What’s Next for Pipe

Pipe is currently using Hasura to query data to present in their
React web frontend. In the future they plan on exploring
additional Hasura features such as mutations - utilizing their
existing Hasura GraphQL APIs to perform data inserts and
updates -- and remote schemas to fetch data from 3rd party
services.

They're also looking closely at GraphQL subscriptions to add
real-time updates and notifications to the user experience. As
their site traffic increases they plan to use Hasura’s database
read-replica support to balance queries and subscriptions
across database replicas.

Finally, webhooks - initiated by Hasura Event Triggers when
database changes occur - may also provide a layer of
real-time integration to their other microservices.

About Hasura.io
Hasura makes developers superhuman and simplifies app development with its open-source, real-time GraphQL API engine to
instantly create reusable, GraphQL and REST APIs from your new and existing data. Power modern apps and complex data
integrations while radically reducing your development time by using a unified interface in the cloud or on-prem. Hasura provides the
tools, scale, and granular security to power the most mission-critical workloads. Learn more by visiting https://hasura.io

Thank you to our friends at Pipe, and Peter Downs - Director
of Engineering, for sharing their story with us!

The on-demand recording of this webinar is available here.

https://hasura.io/docs/latest/graphql/core/databases/index.html
https://hasura.io/docs/latest/graphql/core/auth/authorization/index.html#authorization
https://hasura.io/docs/latest/graphql/core/migrations/config-v2/manage-metadata.html#manage-hasura-metadata-v2
https://hasura.io/docs/latest/graphql/core/databases/postgres/subscriptions/index.html#subscriptions
https://hasura.io/docs/latest/graphql/core/event-triggers/create-trigger.html#create-trigger
https://www.pipe.com
https://www.linkedin.com/in/peterldowns/
https://hasura.io/events/webinar/hasura-pipe/

